David Goettler and Ueli Steck Put Low-Intensity Training to the test in the Khumbu


Why We Are So Focused on Low-Intensity Training?

by Scott Johnston. Uphill Athlete co-founder and Master Coach.

Special thanks to Dr. Monica Piris, MD and Dr Scott Ferguson, PhD for their help with this article.

At the risk of sounding like a broken record, Steve and I continue to beat the drum of low-intensity training for building endurance. Early on in our careers, we connected some previously unconnected dots and had the proverbial ah-hah moment that shaped our training philosophy. Over the past 15 years of ascents and achievements, both personally and with our clients, that philosophy has proven itself to work very well.

Yet we still run into alpine climbers and trainers on daily basis who continue to use training methods more suited to sport climbers and 5000 meter runners because they think high-intensity training is a shortcut to long duration endurance.

What does climbing high mountains look like from a metabolic standpoint? And more importantly, what are the implications for training? We were able to collect data for some of the best alpinists in the world while they trained up to 20,000 feet / 6,100 meters and we feel that sharing this information will help others understand the importance of building the basic aerobic capacity of our athletes.

Alpinist and Uphill Athlete, David Goetter along with Hervé Barmasse and Ueli Steck recently wrapped up a three week training camp in the Khumbu region in Nepal as part of their preparations for their upcoming major climbing objectives this spring. This training block is part of the overall annual training strategy for these guys and their plans have been built around it. This is an extension of a similar training period that David and Ueli used last year (2016) before their trip to Shishapangma.

David and Ueli both wore their HR monitors and uploaded the workouts so we could view them in near real time. One of the first things that we noticed was just how low their heart rates were during all their runs and climbs:

The average and peak HR are much lower than when these guys are training at home in the Alps.

High altitude training: David Goettler running trails near Kongma La (18,135′ / 5,525m).

Below is a screen shot of the workout data download where they climbed Island Peak. The red line represents David’s HR. The grey is the elevation gain (about 1500m) and the horizontal scale is time in hours and minutes. David’s AeT is about 155 BPM at sea level. His maximum HR on this workout was 133. They were climbing at a controlled aerobic effort similar to how they would feel at home: gaining 1500m in 2 hours and 40 minutes. After 15 minutes on the summit his resting HR dropped to only 95 BPM, 50 beats above his low-elevation resting HR (indicating that he was not well acclimated). This give him a very small effective working range. So, he better have a good low-end work capacity because the top-end doesn’t exist.

Heart Rate data (in red on left scale) for David Goettler from February 18th climb of Island, Peak 20,275′ / 6180m. Ueli’s HR chart would look the same.

Physiological mechanisms and implications

There are several prevailing theories as to why this occurs:

  • At high elevations (and the higher that is the more pronounced the effect) the barometric pressure and thus the partial pressure of Oxygen (PO2) of the atmosphere drops. Therefore, each breath contains fewer molecules of oxygen than it does at lower altitude (which has a higher barometric pressure). If you’ve been to even moderately high elevations like 14,000ft you have no doubt noticed that your work rate/speed is greatly reduced. There just isn’t enough O2 to power sustained vigorous work.  One of the upshots of this is that a well-trained heart has much more pumping capacity than is needed at these high elevations. In fact studies have shown that on the summit of Mt. Everest, even if we had an unlimited cardiac output, our maximal work rate would remain unchanged due to the huge drop in oxygen content of the blood. The heart is a slave to the brain which gets feedback from the muscles as to how much O2 is needed to sustain the work required.  When the PO2 drops, the muscle power output necessarily drops with it and so the heart, in response to the lower power demands, cuts the cardiac output by lowering the heart rate.
  • Additionally, the brain may select to prioritize the cardiac muscle over skeletal muscle for O2 delivery.If there is not enough O2 to support a higher cardiac output then the brain will limit the heart rate to ensure that the heart’s O2 demand does not outstrip its supply. Couple this lower cardiac output with the lower PO2 and you’ve got skeletal muscles that simply don’t have enough oxygen to sustain high intensity exercise.
  • Due to the very high rate of ventilation (breaths per step) required at these very high elevations, a great deal of blood will be shunted to the respiratory muscles. This too will leave less for the skeletal muscles.

All three of these stack the deck against those leg muscles being able to get enough blood/O2 to power high intensity movement

Training Implications

So here is the take-home: With HRs so limited, even these very well trained athletes cannot operate at high intensities. They never even see HR Zone 2 or 3 let alone Zone 4 intensities. They just can’t access the higher power muscle fibers that are trained with high intensity (high HR) workouts and consume primarily glycogen for fuel. They are restricted to their humble slow twitch fibers which rely almost exclusively on fat for fuel. Their base aerobic capacity (measured by the Aerobic Threshold) had better be as high as possible because that is really the only metabolic engine they can use at these high altitudes.

This really drives home the importance of low-intensity aerobic base training for these types of athletes. Hours upon hours, month after month for years upon years are required to maximize this quality. This long term chronic endurance training increases the dense network of capillaries in the skeletal muscle where the oxygen transfer into the muscle occurs. NO amount of high-intensity training can provide the needed metabolic or structural adaptations for optimal performance at altitude. In the wrong dose, the high-intensity training that is often prescribed as training for alpinists and mountaineers can be detrimental to aerobic development. Nevertheless, we frequently see this misguided and ill-informed prescription used.

Performance note: These alpinists cut 30 minutes off last year’s identical climb of Island Peak and felt much less fatigued when they got back to their lodge in Chukung. This represents a performance gain of over 8% for already very well trained athletes in about 8 months.  We have seen gains of over 30% in similar tests by less well trained athletes we’ve coached.